Ni(acac)₂-catalyzed cross-coupling and carbonylative cross-coupling of organostannanes with hypervalent iodonium salts

Suk-Ku Kang,* Hyung-Chul Ryu and Sang-Woo Lee

Department of Chemistry, Sungkyunkwan University, Natural Science Campus, Suwon 440-746, Korea

Received (in Cambridge, UK) 27th July 1999, Accepted 31st August 1999

The Ni-catalyzed cross-coupling and carbonylative crosscoupling of organostannanes with hypervalent iodonium salts were achieved in the presence of Ni(acac)₂ (10 mol%) in NMP at 70 °C in moderate yields.

The palladium-catalyzed cross-coupling and carbonylative cross-coupling of organostannanes with organic electrophiles (*i.e.*, halides and triflates) are known as the Stille reaction 1 and have become an extremely powerful tool for carbon-carbon bond formation. In the search for alternatives to the palladium catalyst, the copper and manganese-catalyzed cross-coupling of organostannanes with organic halides has been reported.² Hypervalent iodine compounds have received much attention as the electrophiles with organostannanes in palladiumcatalyzed reactions³ due to their good reactivities, ready availability and nontoxic properties. Recently we have reported⁴ copper(I)-catalyzed cross-coupling and carbonylative crosscoupling of organostannanes with hypervalent iodine compounds. Here we wish to report nickel-catalyzed cross-coupling and carbonylative cross-coupling of iodonium salts with organostannanes.

Generally, to generate active nickel(0) species a reducing agent such as Zn, NaBH₄, or DIBAL-H is needed. Thus, in the nickel-catalyzed cross-coupling of organostannanes with arylmethanesulfonates by Percec *et al.*⁵ the presence of zinc was essential to get an active catalyst. However in the literature, Ni(dppf)Cl₂-catalyzed cross-coupling of chloroarenes with arylboronic acids was realized in the absence of a reducing agent.⁶ We have studied nickel-catalyzed cross-coupling and carbonylative cross-coupling of hypervalent iodonium salts with organostannanes and found that the catalyst Ni(acac)₂ is effective and surprisingly the catalyst performed much better when the reducing agent was omitted (Scheme 1).

$$R^{1} \text{SnBu}_{3} + R^{2} I^{+} PhX^{-} \xrightarrow{\text{Ni}(\text{acac})_{2}(10 \text{ mol}\%)}{\text{NMP}, 70 \,^{\circ}\text{C}, 8 \text{ h}} R^{1}\text{-}R^{2}$$

$$R^{1} = Ph, p\text{-MeOC}_{6}H_{4}$$

$$X = BF_{4}, OTf, Br$$

$$R^{2} = p\text{-MeOC}_{6}H_{1} 2\text{-thienvl}, 2\text{-furyl}, (E)\text{-PhCH}=CH,$$

Scheme 1

Initially, we examined the cross-coupling of *p*-methoxyphenyl(phenyl)iodonium tetrafluoroborate (**1b**) with 2-thienyltributylstannane (**2c**) to form the coupled product **3g** and to find optimum conditions. After a series of experiments, it was found that of the catalysts tested [Ni(acac)₂, [Ni(acac)₂–Zn, NiCl₂(Ph₃P)₂, NiCl₂(Ph₃P)₂–Zn, NiCl₂(dppe), Ni(acac)₂–Zn– Ph₃P, Ni(acac)₂–Et₂Zn, Ni(acac)₂–ZnCl₂, NiCl₂(dppe)–Zn, NiCl₂] Ni(acac)₂ was the only catalyst which afforded the coupled product in a high yield. Of the solvents tested (NMP, DMF, CH₃CN, CHCl₃, THF, CHCl₃–NMP) the solvents NMP and DMF were effective and NMP was the best choice.

The nickel-catalyzed cross-coupling of hypervalent iodonium salts with organostannanes is summarized in Table 1. The diphenyliodonium tetrafluoroborate (1a) reacted with 2-thienyltributylstannane (2c) in the presence of Ni(acac)₂ (10 mol%) in NMP at 70 °C for 8 h to afford 2-phenylthiophene $(3a)^7$ in 79% yield (entry 1 in Table 1). Under the same conditions, treatment of the iodonium salt 1a with 2-furyltributylstannane (2d) gave 2-phenylfuran (3b)⁸ in 78% yield (entry 2). This coupling was applied to alkenyl- and alkynylstannane 2e and 2f. The iodonium salt 1a was readily coupled with 2e and 2f to provide the coupled alkene 3c and alkyne 3d in 82 and 80% yields, respectively (entries 3 and 4) (see Experimental section). For the *p*-methoxyphenyl(phenyl)iodonium tetrafluoroborate (1b), reaction with p-methoxyphenyltributylstannane (2b) gave 4,4'dimethoxy-1,1'-biphenyl (3e) in 73% yield (entry 5). Coupling of 1b with 2-furyl- and 2-thienyltributylstannane (2d) and (2c) afforded p-methoxyphenyl-substituted furan and thiophene **3f** and **3g**⁹ in 71 and 77% yields, respectively (entries 6 and 7). For the *p*-methoxyphenyl(phenyl)iodonium triflate and bromide (1c) and (1d), which have different counterions from 1b, reaction with 2c afforded the coupled product 3g in 75 and 78% yields (entries 8 and 9). It is notable that the yields of crosscoupling were not dependent on the counterions.

In considering a plausible mechanism for the coupling, it is presumed that the oxidative addition of highly reactive electrophilic iodonium salt **1a** with Ni(0) gives polar and reactive PhNi(II)L₂, which if subjected to transmetallation with organostannanes followed by reductive elimination would give the cross-coupled product.

This cross-coupling was extended to carbonylation crosscoupling and the results of carbonylative cross-coupling of hypervalent iodonium salts with organostannanes under atmospheric pressure are summarized in Scheme 2 and Table 2.

$$R^{1}SnBu_{3} + R^{2}I^{1}PhBF_{4}$$

$$\xrightarrow{Ni(acac)_{2}(10 \text{ mol}\%)}{NMP, 70 \,^{\circ}C, 8 \text{ h}} R^{1}COR^{2}$$
 $CO (1 \text{ atm})$

 $R^1 = Ph, p-MeOC_6H_4, (E)-PhCH=CH$

 $R^2 = Ph$, 2-thienyl, 2-furyl, (*E*)-PhCH=CH,

Scheme 2

The iodonium salt **1a** reacted with phenyltributylstannane (**2a**) in the presence of Ni(acac)₂ (10 mol%) in NMP under an atmospheric pressure of carbon monoxide at 70 °C for 8 h to afford benzophenone (**4a**) in 81% yield (entry 1 in Table 2) (see Experimental section). Under the same conditions, 2-thienyltributylstannane (**2c**) was readily coupled with carbon monoxide to give the ketone **4b**¹⁰ in 76% yield (entry 2). This carbonylative cross-coupling was applied to alkenyl- and alkynyl-substituted stannanes **2e** and **2f** which were smoothly coupled to afford unsaturated ketones **4c** and **4d**¹¹ in 72 and 78% yields, respectively (entries 3 and 4). For *p*-methoxy-phenyl(phenyl)iodonium tetrafluoroborate (**1b**), 2-thienyltributylstannane (**2c**) was readily coupled under CO to give aryl

J. Chem. Soc., Perkin Trans. 1, 1999, 2661–2663 2661

Ni(acac)₂-catalyzed cross-coupling of organostannanes with hypervalent iodonium salts

1	$Ph_2I^+BF_4^-$ 1a	$SnBu_3$	Ph S	79
2	la	\int_{O} SnBu ₃ 2d	3a $\bigcirc O$ Ph 3b	78
3	1a	Ph SnBu ₃ 2e	Ph Ph 3c	82
4	la	PhSnBu ₃ 2f	PhPhPh3d	80
5	MeO I^+ Ph BF ₄ $^-$	MeO-SnBu ₃	MeO	73
	1b	2b	3 e	
6	1b	$\overbrace{O}^{\text{SnBu}_3}$	OMe 3f	71
7	1b	\overbrace{l}^{ShBu_3}	S - OMe	77
8	MeO I ⁺ Ph ⁻ OTf	$\overbrace{S}^{\text{SnBu}_3}$	Generation of the second secon	75
9	MeO I ⁺ Ph Br ⁻ 1d	2c	3g	78

ketone $4e^{10}$ in 70% yield (entry 5). Treatment of 1b with alkynyl-substituted stannane 2f afforded ynone $4f^{12}$ in 69%yield (entry 6). Finally the alkenyl-substituted iodonium salt 1c was reacted with 2-furyltributylstannane (2d) to afford the enone $4g^{13}$ in 65% yield (entry 7).

Experimental

Table 1

Typical procedure

To a mixture of diphenyliodonium tetrafluoroborate (1a) (500 mg, 1.36 mmol) and nickel(II) acetylacetonate (34.9 mg, 10 mol%) was added tributyl(phenylethynyl)stannane (2f) (532 mg, 1.36 mmol) under N_2 charged at 70 $^\circ C$ in NMP (20 ml). The reaction mixture was stirred at 70 °C for 8 h, extracted with ether (20 mL \times 3) and washed with water (20 mL \times 3). The organic layer was dried over anhydrous MgSO4 and evaporated in vacuo. The crude product was separated by SiO₂ column chromatography (hexanes, $R_{\rm f} = 0.49$) to afford diphenylacetylene (3d) (194 mg, 80%).

To a mixture of diphenyliodonium tetrafluoroborate (1a) (500 mg, 1.36 mmol) and nickel(II) acetylacetonate (34.9 mg, 10 mol%) was added tributylphenylstannane (2a) (499 mg 1.36

2662 J. Chem. Soc., Perkin Trans. 1, 1999, 2661-2663 mmol) under atmospheric CO at 70 °C in NMP (20 ml). The reaction mixture was stirred at 70 °C for 8 h, extracted with ether (20 mL \times 3), and washed with water (20 mL \times 3). The organic layer was dried over anhydrous MgSO4 and evaporated in vacuo. The crude product was separated by SiO₂ column chromatography (EtOAc-hexanes 1:10 $R_f = 0.45$) to afford benzophenone (4a) (200 mg, 81%).

Isolated yield (%)

Acknowledgements

Generous financial support by KOSEF(99-0501-02-01-3) and KOSEF-Center for Molecular Design and Synthesis (CMDS).

Notes and references

- Review: (a) J. K. Stille, Angew. Chem., Int. Ed. Engl., 1986, 25, 508; (b) T. N. Mitchell, Synthesis, 1992, 803.
- 2 (a) J. R. Falck, R. K. Bhatt and J. Ye, J. Am. Chem. Soc., 1996, 117, 5973-5982; (b) S.-K. Kang, J.-S. Kim and S.-C. Choi, J. Org. Chem., 1997, 62, 4208-4209.
- 3 (a) R. M. Moriarty and W. R. Epa, Tetrahedron Lett., 1992, 33, 4095-4098; (b) R. T. Hinkle, G. T. Poulter and P. J. Stang, J. Am. Chem. Soc., 1993, 115, 11626-11627; (c) S.-K. Kang, H.-W. Lee,

Table 2	Ni(acac) ₂ -	catalyzed	carbonylativ	e cross-coupl	ing of	organostannanes	with	hypervalent	iodonium s	salts
					0.	0		2 F • • • • • •		

J.-S. Kim and S.-C. Choi, *Tetrahedron Lett.*, 1996, **37**, 3733–3736; (*d*) S.-K. Kang, H.-W. Lee, S.-B. Jang, T.-H. Kim and J.-S. Kim, *Synth. Commun.*, 1996, **26**, 4311–4318.

4 S.-K. Kang, T. Yamaguchi, T.-H. Kim and P.-S. Ho, J. Org. Chem., 1996, 61, 9082–9083.

- 5 V. Percec, J.-Y. Bae and D. H. Hill, J. Org. Chem., 1995, 60, 6895–6903.
- 6 A. F. Indolese, Tetrahedron Lett., 1997, 38, 3513-3516.
- 7 (a) T. Sotoyama, S. Hara and A. Suzuki, *Bull. Chem. Soc. Jpn.*, 1979, **52**, 1865–1866; (b) E. I. Negishi, F. T. Luo, R. Frishee and H. Matsushita, *Heterocycles*, 1992, **22**, 1667–1669.
- 8 A. Pelter, M. Rowland and G. Clements, Synthesis, 1987, 51-53.
- 9 L. T. Baldwin, S. Pakray, R. Castle and M. L. Lee, J. Heterocycl. Chem., 1985, 22, 1667–1669.
- S.-K. Kang, K.-H. Lim, P.-S. Ho, S.-K. Yoon and H.-J. Son, *Synth. Commun.*, 1998, **28**, 1481–1489.
 L. Delaude, A. M. Masdeu and H. Alper, *Synthesis*, 1994, 1149–
- 11 L. Delaude, A. M. Masdeu and H. Alper, Synthesis, 1994, 1149– 1151.
- 12 T. Kobayashi and M. Tanaka, J. Chem. Soc., Chem. Commun., 1981, 333–334.
- 13 M. A. Ciafolin and N. E. Byrne, J. Chem. Soc., Chem. Commun., 1988, 1230–1231.

Communication 9/06086C